Your single source for new lessons on legal technology, e-discovery, and the people innovating behind the scenes.

3 Healthy Habits of Every Successful Analytics Team

Constantine Pappas

Editor's Note: First published in June 2016, this post still provides a solid foundation for successful analytics usage on any legal team. Give it a read to see if your best practices match up.

Our industry exists in an era of fast-paced innovation, but you’d be hard-pressed to find someone who could successfully argue that new technology, in itself, by itself, is enough. Each product or feature needs to be supported with instructional content that makes the technology accessible and perhaps even attractive to its intended users. Even so, there is only so much a technology creator can do to ensure a positive outcome once the product ships and arrives in the customer’s hands.

We’ve learned that being successful, truly successful, with text analytics requires specific patterns in case teams’ processes. What’s more, customers who take ownership of their analytics success appear to travel very similar paths, and we’d like to spend a bit of time today exploring a few of these trends in the form of three useful tips.

Successful analytics users:

1. Know their data.

Knowing what documents you have and how you expect them to behave in an analytics setting is an essential step in your project planning. We don’t see projects go south very often, but when we do, it is almost always because someone didn’t ask enough questions about the documents with which they’d be working.

For example, they:

  • Ask if the case hinges on numbers, or if a single word in a contract will determine relevance.
  • Clean up their text with regular expressions to optimize email threading.
  • Develop a strategy to identify documents, such as those with poor OCR, which will require separate, manual review.

2. Ask, don’t guess.

Unless you are a seasoned veteran, there comes a time when you might not be sure what to do next. Even the simplest tools might give results that are open to multiple interpretations, or have workflows that perhaps could be tweaked to achieve better results.

In these situations, the more successful users take a minute to stop and ask a technologist—on your team, at a partner, or with your software vendor—to help them interpret their results and assess next actions. This approach is far more preferable to forging ahead and hoping for the best.

For example, they:

  • Select and groom an internal analytics guru to guide the rest of the team. Having your own point person who masters the tools and achieves certification status not only streamlines and shortens your organization’s decision-making process, but also adds prestige to your team both internally and externally.
  • Seek out workflow experts before acting. This is decidedly an “ounce of prevention vs. pound of cure” situation. For example, it’s very common for newer users to seek advice early and often during their initial analytics efforts. Once they navigate the process a few times, the need for support drops off precipitously.

3. Practice, practice, practice.

It is said (ok, by me), that your first day of review is like your first pancake: You feed it to the dog (I don’t have one, but let’s pretend). You then adjust your temperature and move forward.

The same applies to your first use of analytics. You might get a good result, but only after regular use do you get into a good rhythm of what works and what to expect. Once you have a better feel for how all the pieces fit together, you’ll be able to improvise new workflows and focus on expected results.

Some folks wait for a really big case to get their feet wet in analytics, but this is not necessary. It is much simpler to cut your teeth on many smaller cases, especially when it comes to structured analytics, such as email threading or textual near-duplicate detection.

For example, successful teams:

  • Thread everything that contains emails, regardless of the project size. We see teams running email threading on data sets as small as 5,000 documents. There is still incredible value to be found in these smaller cases, and the proficiency you gain will only further ensure your success in the bigger cases.
  • Have internal learning events. One of the more impressive pieces of feedback we’ve received from customers is how they share their experiences internally. Some have regularly scheduled lunch and learns, while others do case studies or retro-analyses on cases once the project closes. Regardless of how you share lessons learned with your colleagues, sharing practical tips and results is a great shorthand type of practice.
  • Find ways to incorporate analytics into their existing workflows. The most skilled analytics users inevitably see past the myth that analytics usage is an either/or situation. There are many great hybrid options here, such as performing keyword searches with the help of conceptual keyword expansion; using cluster visualization to prioritize data during a manual review; or streamlining a QC review of privileged documents with near-duplicate detection.

Analytics features are not inherently any more difficult to use than other tools. As with any new technology, two of the main reasons some folks perceive them as more difficult stems from a lack of exposure and a lack of practice. These obstacles are only temporary and easy to overcome, as we’ve seen time and again with our customers.

What makes your team successful with analytics? What roadblocks are in your way? Let us know @RelativityHQ on Twitter, and feel free to contact us if we can help on your next project.

Constantine Pappas is a licensed attorney with more than 15 years of legal experience. He has served as in-house counsel and managed both paper and electronic discovery for large-scale lawsuits and government investigations. As a member of Relativity’s customer success team, Constantine helps Relativity users with workflows for text analytics and computer-assisted review.