Technology-assisted Review

Get to the truth faster.

Technology-assisted review software, built on a powerful analytics engine, helps you find your most relevant documents faster.


Relativity Technology Assisted Review Software - Machine Learning Capabilities

The Speed of Active Learning

RelativityOne’s active learning workflow continuously learns what’s important to your matter to quickly get to the heart of it.


Relativity's eDiscovery Machine Learning Animation

Real-time Intelligence

As you code documents, RelativityOne will keep a pulse on coding decisions in real time, constantly refining its understanding of what’s responsive to get smarter as the review progresses.

Be Targeted

Simply code documents and the most relevant ones will be served up next, so reviewers can always take advantage of the system’s most current understanding.

Let the Engine Do the Work

With little administrative support required—and no need to create training sets—you can stand your project up quickly and let the active learning engine do the heavy lifting.

Meet the Needs of Any Project

Choose the active learning workflow that’s right for your unique project. The prioritized review queue serves up the most responsive documents first, so you can get the most important ones to your reviewers right away. The coverage queue delivers documents the engine is most unsure about, helping it understand relevancy and allowing you to review fewer documents.

The Breadth of Sample-Based Learning

RelativityOne’s sample-based learning workflow uses sampling to slice a document set in various ways, making sure you get coverage across all of your documents as you’re training the system to make decisions.

Jump Start Your Review

RelativityOne leverages a seed set of human-coded documents to train the system, giving you a jump start on your review. Based on that, coding decisions are suggested for the remaining document universe, so you can immediately begin QC to refine the system’s understanding.

Only Review What You Want

Easily sort your documents into groups, so you can have responsive documents reviewed by the most qualified experts and uncategorized ones passed to other reviewers for QC.

Proven and Accepted

RelativityOne’s sample-based learning workflow has been proven effective by hundreds of organizations and approved by courts across the globe.

The TAR Question: Not Whether, but How

Court decisions have opened the door for the use of TAR and advanced analytics in e-discovery. A few jurists responsible for groundbreaking TAR decisions joined us for the annual judicial panel at Relativity Fest 2017. While the judges agreed that the workflow is increasingly accepted, the new question is how involved judges should be in protocol discussions.

The New Era in Technology Assisted Review Software

Take the Best Path for Your Project

With two separate and powerful workflows for technology-assisted review, you can amplify your team’s efforts on any project.

Machine Learning in Relativity eDiscovery Analytics & Technology Assisted Review Software

Customize Your Approach

Create an approach that’s most effective for the unique needs of each project—whether it’s investigating the merits of a claim, sorting your data into key issues, or preparing evidence for litigation.

Rapid Review and Production

Let the analytics engine do the heavy lifting when it comes to prioritizing your review and preparing productions, so you can focus on reviewing only what’s relevant.

Fully Integrated

Use Assisted Review software workflows with other robust analytics features to quickly and effectively bring your story together.

“Analytics is on the rise throughout Australia as there is more litigation and regulatory action to make sure people are conducting reviews correctly. We have found active learning in Relativity has helped us seamlessly handle these complex reviews—and get the job done quickly.”

CRAIG MACAULAY, Executive Director, Forensic Technology

Craig Macaulay

Ready to use RelativityOne?

Resources You Might Like:

White Paper

Active Learning in Technology-assisted Review: Relativity’s Approach to SVM and the Tech Behind It
Learn about the how the active learning workflow works, the technology behind it, and how to monitor and validate your projects.

Recorded Webinar

Active Learning Overview
Learn more about how to use the new active learning workflow from our experts.

Blog Post

The Speed of Active Learning
Find out how active learning in Technology-assisted Review can help you get to the heart of your matter quickly.

White Paper

Control Sets: Introducing Precision, Recall, and F1 in the Sample-Based Learning Workflow in Relativity Assisted Review
Learn the different ways to conduct and measure the accuracy of a sample-based learning project.